
State of Suricata

15 November 2017 -- Victor Julien, OISF

Overview

● 10 years of Suricata (code)
● Past year
● Next year

November 2007

● Matt Jonkman and Will Metcalf and myself had been
talking about doing a new IDS engine

● We thought it was too hard to get it funded
● At some point I just started coding something

10 years of Suricata (code)

● Code started in Nov 2007
● Playground for multi-threading experimentation in C
● Netfilter NFQ based packet forwarder

What's in a name?

● VIPS: 2007- July 2009
● EIDPS: July 2009 - Dec 2009
● Suricata: Dec 2009 - now

10 years of Suricata

● Name “Suricata” came from the suggestion of using the
Meerkat as mascot

● Latin Genus name: “Suricata”
● Late July 2009 first email conversation about “Suricata”
● December 2009 code starts using “Suricata”

Current Code

● ~360K LOC
● Mostly C, a bit of Rust (~1.5%)

2017

or: what we did since
SuriCon DC

Suricata 3.2 (2016/12/01)

● TLS improvements
● Bypass functionality
● SCADA protocols
● User docs => sphinx (pdf, readthedocs)
● Performance improvements

Suricata 3.2.x releases

● 3.2.1: 2017/02/15 typical point-one release, lots of fixes
● 3.2.2: 2017/06/07 fix ippair and vlan issues
● 3.2.3: 2017/07/13 DER/ASN1 fix
● 3.2.4: 2017/10/18 lots of smaller fixes, DoS fix
● EOL soon

Suricata 4.0 (2017/07/27)

● Detection capabilities extended for HTTP, TLS and more
● Further TLS improvements, incl STARTTLS
● Experimental Rust: NFS, DNS, NTP
● Extended EVE json log fields
● Rewritten TCP stream reassembly engine

Suricata 4.0.x release(s)

● 4.0.1: 2017/10/18 collection of minor fixes
● 4.0.2: ETA late November / early December

Github repo now OISF/suricata

● Was inliniac/suricata
● Looks better
● Helps team do reviews

Rust

● Based on Pierre's talk and work
● Rust is a safe & fast system programming language
● Experimental for now
● Will stay experimental in 4.1
● 1.6% of code, hope to double that by SuriCon 2018

Rust implementations

● NFSv2 & NFSv3, including logging & file extraction
● DNS
● NTP

Contributors (by commit)

 42 Mats Klepsland

 8 Pierre Chifflier

 6 Alexander Gozman

 5 David Wharton

 5 Sascha Steinbiss

 4 Phil Young

 4 fooinha

 2 Jon Zeolla

 2 Ray Ruvinskiy

 2 jason taylor

 1 Abbed

 1 Derek

 1 Giuseppe Longo

 1 Julian

 1 Peter Sanders

 1 Sebastian Garcia

 1 Selivanov Pavel

 1 Travis Green

 1 psanders240

 1 qiangbei

We’re hiring!

● Want to work on open source code in your pyjama’s?
● Some travel
● Skills required:

○ C and/or Rust

○ Python helps

○ Community oriented

○ Able to communicate with a virtual/distributed team

EOL policy

● We’ve had an implicit EOL policy
● Now formalized
● We will send EOL announcements
● 4.0 is ‘stable’
● 3.2 is ‘oldstable’, EOL soon
● https://suricata-ids.org/about/eol-policy/
● Still no LTS, as no one stepped up to fund it (but you

could!)

https://suricata-ids.org/about/eol-policy/

Support Status (in progress)

● Ongoing effort to document what parts of the engine are
supported by OISF, which by community

● Currently ‘tier 1’, ‘tier 2’, community
● Tier 1: core features on most important platforms

○ E.g. AF_PACKET on Linux

● Tier 2: lesser used features and/or OS’
○ E.g. OpenBSD support

Support Status (in progress)

● Community: contributed things that have limited use
cases or are just very new

● https://redmine.openinfosecfoundation.org/projects/sur
icata/wiki/Support_Status

Upcoming

suricata-update

● rule / intel updater designed especially for Suricata
● Meant to replace oinkmaster / pulledpork for Suricata

users
● GPLv2 licensed, developed in Python
● Command line tool
● Maintained by Jason Ish
● https://github.com/OISF/suricata-update

4.1dev is about to open

● Lots of Pull Requests and branches waiting
● Lots more coming

SMB/SMB2/SMB3

● Implementation in Rust
● Reimplementation of current SMB1 and DCERPC

parsing
● Add SMB2 and SMB3 support

SMB

● Funded by FoxIT to develop logging for SMB2+
● Adding SMB1 as well
● Detection
● File extraction
● Logging

Detection

● “alert smb …” -> match smb1/2/3
● “alert smb … (file_data; content:”MZ”; depth:2; …)”
● “alert smb … (smb_named_pipe; content:"|5C

5C|192.168.199.133|5C|IPC|24|"; …)”
● “alert smb … (smb_share; content:"|5C

5C|ts412|5C|pcap"; …)”
● “alert smb … (filemagic:”PDF”; …)”

Transformation keywords

E.g.

file_data; compress_whitespace; content:”window.location=”;

Takes a ‘stickybuffer’ and transforms it.

Multiple transforms can be chained.

Transform: strip_whitespace

Remove whitespace from buffer.

E.g.

“A B C” => “ABC”

Transform:
compress_whitespace
Normalize whitespace in buffer.

E.g.

“A B C” => “A B C”

Transform: to_sha256

Replace buffer with sha256 hash of the buffer content.

E.g.

“www.baddomain.com” =>
“1b9d9527933923ca7499c100a97715d142911a8267d41b
1a649fee8905a46495”

http://www.baddomain.com

Transformations

Planned:

● strip_nulls
● Others needed?
● Bring your ideas / whishes to the brainstorm session

Optimizations

● Detection engine rewrite
● Reduce complexity
● Clean up
● Support transforms
● Making extending easier
● Solve some corner cases
● Improve performance
● Output more useful info about rules

Flowbits

● Adding a flowbits analyzer
● Will warn when rule checks a bit that is never set
● Dumps flowbits to JSON for analysis

More optimizations

● Improved the existing MPM implementations AC and its
variants by taking depth/offset into account

● Added logic to automagically set depth/offset where
possible
○ E.g. content:”abc”; depth:3; content:”defg”; within:4; distance:0;

● Apply ‘urilen’ to http_uri/http_raw_uri as depth
● Improves performance for both Hyperscan and built-in

AC variants

XDP/eBPF

● Work by Eric Leblond with testing by Michal Purzynski
● More better flow bypass
● See their talk :)

Rate_filter “by_both”

● Rate_filter per ip-pair
● Developed by Ruslan Usmanov
● Hopefully path into full thresholding support for ip-pair

Rule Metadata logging

● Use rule ‘metadata’ field as a key/value pair list
● ET/ETpro has started using this
● Eric Leblond is working on this

PCAP improvements

● Danny Browning is adding improvements to PCAP file
processing

● Commandline option to process a directory of pcaps
● Option to keep Suricata active so you can drop in new

files
● Improvements to the Unix Socket mode, like adding

support for directories there as well

Traffic ID ruleset

● New ruleset to be released soon
● Will be like ‘AppID’ / ‘OpenAppID’
● Classification: label flows with metadata
● Support bypass, so ‘bypass netflix traffic’
● Open source, license TBD. Likely GPL or BSD/MIT.

PF_RING Hardware Bypass

● “Flow bypass” -> skip processing of elephant flows that
are uninteresting, e.g. Netflix

● Alfredo Cardigliano is adding “flow bypass” support to
PF_RING

● PF_RING can offload this bypass to hardware if the
hardware supports it

● Alfredo will explain it in his own talk

Suricata (Community) Council

● Idea to have regular & somewhat structured
conversations with community members and
contributors

● Likely schedule: talk every quarter by phone or chat, if
possible in-person at SuriCon

● Open discussion and idea sharing between dev team and
community

● More info soon

Wrapping Up

State of Suricata

● Overall state is good
● Community is healthy and growing
● OISF is doing well

Things are good, but...

● We want to grow the dev team
● We need funding for that
● So… We need your help

Join Us!

● We are looking for developers, QA help, doc writers, etc
● We have paid positions available both full time and part

time
● Talk to me or any of the team at SuriCon or email me at

victor@inliniac.net

Wrapping up (really)

● 10 years of Suricata has been a lot of fun
● It was much harder than we imagined
● I made many friends
● Very grateful for your support
● I’m proud and all, but my mind is already on what I will be

working on next week

Let’s make the next decade
“TREMENDOUS”

