
Contributing to
Suricata

November 2017 -- Victor Julien, OISF

Overview

● Legal side
● Code
● Github & QA
● Post-merge

Contributors (by commit)

 42 Mats Klepsland

 8 Pierre Chifflier

 6 Alexander Gozman

 5 David Wharton

 5 Sascha Steinbiss

 4 Phil Young

 4 fooinha

 2 Jon Zeolla

 2 Ray Ruvinskiy

 2 jason taylor

 1 Abbed

 1 Derek

 1 Giuseppe Longo

 1 Julian

 1 Peter Sanders

 1 Sebastian Garcia

 1 Selivanov Pavel

 1 Travis Green

 1 psanders240

 1 qiangbei

Legal

Legal

● Contrib agreement
● Makes sure OISF owns the code
● We need this to:

○ Defend Suricata in case of legal challenges

○ Reduce risk to our users (e.g. avoid netfilters current troubles)

○ Support Suricata dev through the consortium

● Contrib agreement at the website or part of custom
agreements

Code

Features?

● Please probe if the team (and/or larger community) is
interested in a feature before spending a lot of time on it

● We will not accept just any feature
● IRC: #suricata at freenode.net

Support Status (in progress)

● Ongoing effort to document what parts of the engine are
supported by OISF, which by community

● Currently ‘tier 1’, ‘tier 2’, community
● Tier 1: core features on most important platforms

○ E.g. AF_PACKET on Linux

● Tier 2: lesser used features and/or OS’
○ E.g. OpenBSD support

Support Status (in progress)

● Community: contributed things that have limited use
cases or are just very new

● https://redmine.openinfosecfoundation.org/projects/sur
icata/wiki/Support_Status

Code Quality

● Stick with our coding style (even if you don’t like it)
● Documented on our redmine
● When in doubt, check with the dev team

Branch to target

● Bug fixes should target the stable branch(es)
○ Master-3.2.x

● Features should target development branch
● Dev branch is not open all the time
● We unofficially use ‘merge windows’, but we need to

improve the communication around this

Commits

● Separate commits logically
● Don’t mix too many things in a single commit
● No style fixes and other changes in a single commit
● Stick with correct formatting of commit messages (kernel

style)
● Describe purpose and reason of change

Docs!

● Documentation is part of github repo
● If you change behavior, doc it!

Github & QA

Github workflow

● Iterative process:
● Make new Pull Request & close old (if any)
● Feedback

Github: pull request

● Template in place, please use that and be mindful of the
formatting

● Describe your proposed changes
● Describe changes since your last PR on the same topic
● Add reference to redmine ticket
● Indicate what you need. Merge? Feedback? Testing? etc.

Github: automated feedback

● Travis CI
● AppVeyor
● Tests: build, compile warnings, unittests, blacklisted

functions
● On failure you should have all info to fix things on your

own
● If you’re a regular contributor, please enable Travis CI

and AppVeyor on your own account as well (it’s free)

Github: review phase

● Using Github ‘review’ capabilities
● Me or team member(s) reviewing the diff
● Most of the time this means no actual testing yet
● Often leads to change requests that should go into new

PR (+new branch)

Github: manual QA

● Infamous ‘PRscript’ -> ETpro pcap/sid regression test
● More infamous “Victor’s QA”

○ Lots of tests, code checkers, fuzzers, etc

● On failure we will try to share required info or test case
where possible

Post-Merge

Great, your code was accepted!

● Please stay involved to monitor how the change works
● Team will assign bug reports in this code to you
● Depending on feature and interaction support status

would probably start at ‘community’

Thank you for
(listening|contributing)

